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Influence of small-scale structure on radiative transfer
and photosynthesis in vegetation canopies

Yuri Knyazikhin! Jérn Kranigié Ranga B. Mynent,Oleg Panfyoro¥,and
Gode Gravenhorst

Abstract. The use of Beer's law to describe the radiation regime in plant canopies is valid for a
sufficiently large volume filled densely with phytoelements. This set a limit to the scale at which
models, based on Beer's law, can account for structural features of vegetation canopies and
provide an adequate prediction of the radiation regime. The aim of our paper is to analyze radiation
interaction in vegetation canopies and consequent photosynthetic rates at a scale at which Beer's
law loses its validity. We use fractals to simulate the structure of vegetation canopies at this scale.
It is shown that both the radiation regime and the photosynthesis depend on the fractal dimension
of the plant stand. The development of radiative transfer models in fractal-like media as well as
measurements and modeling of fractal characteristics of trees and tree communities are essential
for better understanding and scaling of radiative transfer and photosynthetic processes from an
individual leaf to the canopy.

1. Introduction 1990] and account for some structural properties of tree
rganization Dker-Blom 1991;Chen et al. 1994; Stenberg

95].
Recent investigations of plant morphologle[Reffye et
1991] as well as small-scale measurements of geometrical

The structure of vegetation canopies determines the spafi
distribution of intercepted incident radiation which drives
various physiological and physical processes required for tQF

funct!on!ng qf .pla.mts. In order to quant|tat|vely modgl th'? atures of individual trees and tree communitiéside and
functioning, it is important to understand the interaction

electromagnetic radiation with different types of cano feifer, 1991;Rigon et al, 1994;Vedyushkin 1995] indicate
g o o P¥hat the architecture of most vegetation canopies obeys the
structural organizations.

Numerous models for describing the radiation regime |?WS of fractal geometry. The fractal characteristics of vege-

. . . ation canopies depend on the structure of tree organization
vegetation canopies have been developed since the classic .
may vary between trees and tree spedesd¢ and

ggjelljg,g/l; r\:\‘j’laanﬁeiizmllzgi’avr\:(r)mh (EZ?;:Z?J(E; Irsefzreriz Ffeifer, 1991]. Fractality essentially means that the relation-
g bp P Py ship between volume and number of phytoelements in it is

as Beer's law). A key assumption underlining this law is the " . . . . .
o . . nonlinear. This property conflicts with the above mentioned
following: the number of scattering centers (e.g., leaves) in an

. . . . et\ssumption of Beer’s law, and an investigation of its conse-
elementary volume is proportional to its volume. Given lea

. . . . . guence is essential for better understanding of the processes
size, orientation, and optical properties of leaves, we can

. . overning the functioning of vegetation systems. Therefore
mathematically express the law of energy conservation. Fro% 9 g g y

. . . o our goal is to analyze the interaction of electromagnetic ra-

information on the spatial distribution of such elementary. . . . o

. . - iation with fractal-like canopy organizations and to demon-

volumes, one can derive various models for describing tj;e
|

radiation regime of plant stands. For example, in the turb fate that the radiation regime and canopy photosynthesis

. . . epend on fractal characteristics of such media, while the
medium models, the vegetation canopy is treated as a gas vy, . o

) . . eer’s law is insensitive to them.
nondimensional planar scattering centelBods 1981].

) . ., Here we proceed with the suggestion that a vegetation
Alternately, modeling plants or trees in a stand as geometrlcaalnO obevs the laws of fractal aeometry and for which there
objects (cones, ellipsoids, etc.) leads to a family afoRy 4 g Y

geometrical-optical modelsNjison, 1977: Li and Strahler Is adequate empirical basikrpnigk and Gravenhorstl993;

1986]. There are also hybrid canopy radiation models Whi(ljﬂamgk etal., 1994]. Thus we use this geometry to reproduce

incorporate features of both these approachesmhan and an example coniferous stand with a high level of realism
Welleps 1983 Nilson 1992 Li et al 1%25_ Myneni et al (section 2). We then formulate a strict mathematical definition

of vegetation canopy structure as well as a method for its ap-
_— roximation. We utilize the steady state radiative transfer
Department of Geography, Boston University, Massachusetts.p fi ¢ imulate the th d'y . | distributi f
Znstitute of Bioclimatology, University Gottingen, Gaigen, cduation to .Slmuae- e .re.e- Imensional distnbution o
Germany. photosynthetically active radiation (PAR) and canopy photo-
synthesis, using the simulated fractal forest as input. The use
of transport theory presupposes that Beer's law can be applied
Paper number 97JD03380. to describe the radiative regime in plant canopies; but this as-
0148-0227/98/97JD-03380$09.00 sumption is violated in the case of the modeled fractal forest
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stand. This discrepancy leads to a paradarigk, 1996]: Bramke, 51.85°N, 10.40°E). The watershed, Lange Bramke,
the more accurately the canopy structure is reproduced, tlibere ecosystem measurements were carried out, consists
more inaccurately the radiative regime and canopy photosymainly of two slopes with north and south orientation. The
thesis are estimated (section 3). Note that similar paradoxssse plot, selected for this study, was a 40 m by 40 m plot
are already described and explained, for example, in cloadntaining 297 trees (tree density of 1856 trees per hectare)
physics, remote sensing, and microphysiological investigand located on the south slope. The diameters of the tree
tions [Quattrochi and Goodchild 1997; Lovejoy and trunks varied from 6 to 28 cm. The stand is rather dense but
Schetzer1994;Ehleringer et al, 1993]. We will follow the with some local gaps. Tree locations were mappednigk et
methodology of these investigations. We start our analysa., 1994], and total height, height-to-crown base, and crown
with examining the problem of photon interaction with thevidths were measured on all trees in this stand.

simplest fractal organization, the Cantor set (section 4). The trees were divided into five classes with respect to the
Further, two patterns of canopy organization are consideredstem diameter. A model of a Norway spruce based on fractal
section 5. In the first case, the phytoelements are distributglometry Kranigk and Gravenhorstl993] was then used to
uniformly within the canopy space, and in the second cadmjild a representative tree in each class. The computer-gener-
their vertical distribution is specified by the distribution of theated base plot is shown in Figure 1. In the framework of an
Cantor set. For both of these patterns, we derive equationsdarlier project, 10 Norway spruce trees near the base plot were
canopy transmittance and photosynthesis which depend on tiw¢ in 1989 and a data bank on measured crown morphology
fractal dimension of the patterns. Finally, a discussion witlvas assembled3ruber et al.,1992]. These data were used to
conclusions about radiation interaction with fractal-like medisalidate the architectural and morphological properties of our

are presented in section 6. tree models. A good agreement between measured and
simulated tree morphology was reported previouklsahigk

2. Structure of the Forest Stand in Lange et al, 1994]. Thus we idealize our base plot as a forest canopy

Bramke consisting of 297 fractal trees (Figure 1). This model of plant

stand is used to generate a three-dimensional distribution of

Norway spruce stand, about 50 km east of Gottingen photosynthetically active radiation and canopy photosynthesis.
the Harz Mountains, was chosen for simulation (Lange

Figure 1. Computer-generated Norway spruce stand shown from different directions: front view (top left),
crown map (bottom left), and cross section (right).
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A good agreement between the field measurements and
simulated radiation regime at a scale at which Beer’s law ¢
be utilized were reported previouslyKrpnigk, 1996;
Knyazikhin et al 1997].

2.1. Basic Foliage Element

A conifer needle is taken as the basic foliage element ¢
approximated as small cylinders. The projected needle are
used to quantify the one-side area of the phytoelements an
express photosynthetic rates. The leaf normal distribution
assumed spherical. The Bi-Lambertian reflectance mo
[Ross and Nilsorl,968] is used in the calculations to simulat
the reflection and transmission of needles at PAR way
lengths; the reflectance and transmittance coefficients w
determined from measurements (0.067 and 0.033, resg
tively). Interaction of radiation with stems and branches
neglected; therefore the canopy space is idealized as optic
nearly black, flat linear elements that are spherically oriented.
Their spatial distribution is generated by the fractal archite
tural model (Figure 1).

Figure 2. Three-dimensional distribution of foliated cells.
The canopy space is limited by the slope and a plane parallel
o to the slope at a height of the tallest tree. This distribution is
2.2. Canopy Structure and Its Approximation described by the functiox(r) whose value is 1 (a fine cell is
_plotted), if there is a needle in the cell around the space point

. .TO quanUfy the structure of panopy, we.mtroduce c,r:(x,y,z),and 0 otherwise (a fine cell is not plotted). The size
indicator functionx(r) whose value is 1, if there is a needle ¢ of the fine cell is 0.5 m in this plot. Tending the cell size to

the pointr = (x, y, 3, and 0 otherwise. The canopy structure zero, this plot converges to the one shown in Figure 1.
defined by the indicator function. We introduce a fine spati

mesh by dividing the base plot inté; nonoverlapping fine The second conceptual limitation in classical theory is that
cells,e, i =1, 2, ...N,, of sizeAx = Ay = Az =& We ap- {pe |eaves are assumed distributed such that there is no mutual
proximate the canopy structure by a piece-wise constalfading along any direction. It means that each cell is
function xe(r): Xe(r) = Xz if r U &. Herex;; is equal to 1, if iqeglized as a turbid medium filled with infinitesimal planar
there is a needle within the cell and 0 otherwise. It is intui- glements, uniformly distributed within the cell, and oriented
tively clear that ag becomes smaller, the function(r) ap- iy a1 possible directions. The leaf area density in the cell

proximates the-can.opy structure better. We call this fUPCtiQﬂepends on foliage clumping, gap distribution, etc. This
X:r) an approximation of canopy structure by cells of $ize 555 mption can be realized only if the definition of the leaf

Figure 2 demonstrates the three-dimensional distribution gfs density distribution function can be formulated for
the functionx(r), where the cell sizeis 0.5 m. The model of arbitrary small cells.

plant stand shown in Figure 1 is the limit of this functioeas  jnder these assumptions, Beer's law can be utilized to

tends to zero. S o _ ~ describe radiation attenuation. The theory allows us to extend
In models of radiation interaction in vegetation canopiesgy gjlization from a sufficiently big cell to the entire canopy
the leaf area density distribution functiop(r) quantifies the [Ross 1981]. The underlying assumptions of Beer's law
canopy structure. Its value at a fine cellis defined as the predetermine a scale at which this approach provides an
ratio of totalsone-glde leaf area within this ca (in '), to adequate prediction. There are scales which account for
the volumee™ of this cell Ross 1981]; that is, spatial distribution of trees, tree shape, vertical distribution of
u(r) =AS/€  ifrle. (1) foliage within crowns, and its clumpingiiyazikhin et al

1997]. For photosynthesis calculations, however, these scales
1 2SS may be rather large. Canopy photosynthesis depends on the
comparable talxdy = “:2 Therefore the leaf area distribution jisinytion of radiation on foliage elements and the
function becomes arbitrarily large @stends to zero. This ,pqotosynthetic response of the elements. Recent models are
property sets a limit to the applicability of the classicalanapie of reproducing the canopy architecture with a high
approach for characterizing the vegetation canopy structujgye| of realism, from leaf to canopy scale (for example,
the cell size should be so great that leaves in it can be treqﬁ?ﬁhre 1). The classical transport theory, however, is not
as infinitesimal planar elements. The heterogeneity of thRefy| for predicting the radiation regime at the leaf level. To
entire canopy is characterized by variations in leaf area i monstrate this, we evaluate canopy photosynthesis for two
these cells. values of the cell size using the classical approach.

The total one-side leaf are¥§ in an infinitesimal cell is
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3. Canopy Photosynthesis Evaluated With of the total canopy space. The distribution of cells with low
Beer's Law foliage densitiesu(< 8 nf/m° is approximately the same.

We used the steady state radiative transfer equation
. . . [Knyazikhin et al 1997] to simulate the radiation field in the
simulated base plot with cells of sizee 0.5 m anck=0.25 m. gﬁse plot. Its solution is the intensity,Q) of PAR. The PAR

We use (1) to derive the three-dimensional distribution of le . . o S
area density, (r) for these two canopies. The leaf area densigntensﬂy was evaluated in 80 directions distributed over the
. PIes. tnit sphere according to Carlson’s quadrature rGlarlson

of a cell from the intersection of trees is given by the sum (1@70]- Within the cell about, a photosynthesis-radiation re-

leaf area densities of the intersecting cells. Thus the ; . .
L ?gonseP.eaf(r,QL) of leaf area with unit normaf2_ directed

approximations have the same leaf area as the base poutt'ward from its upper surface was simulated by a three-pa-

Figure 2 illustrates the three-dimensional distribution of the PP y P

function xo5(r). The histograms of the frequenegu) of leaf rameter equatiorFfrioul and Chartiey 1977]:
area per foliated cell for the two approximations are shown Pt (1, Q) - (AF, + Pria)Piealr, L) + OF Prax= 0,

in Figure 3. Cells where=0 make up about 77%<0.5 m) .
and 78% £ = 0.25 m) of the total number of cells. TheWhere Pleafr, ), , Prax are gross photosynthesis, apparent

. . . %uantum yield, and maximum gross photosynthesis at light

volume of the parallelepiped in which the tree crowns ar . . . .
. saturation, respectively is the convexity parameter, akd
located makes up about 27% of the canopy space, which. | . .
X is the PAR energy flux on the leaf area with unit norfal
close to the volume of all foliated cells. Thus the base plot IS, . .
. wdthln the cell about:

rather dense but with some local gaps. The average one-side
leaf area per uanlt volume increases from about G/nfrto _ FL= I(r,Q)|Q- QL|dQ _
about 0.6 fm® when the cell size is halved. Cells of size
0.25 m result in 1.6 times more cells with high foliage i
densities ¢ > 8 nf/m% than cells of size 0.5 m (Figure 3).Canopy photosynthesR.,, at a given time can be expressed

These cells are about 1.1%=0.5 m) and 1.8%¢(= 0.25 m) as

Let us consider two approximationg,s(r) and xo..(r), of

100

cell size: 0.5

------ cell size: 0.25

10 A

[EEN
1

o
=
1

Frequency of cells, %

0.01

0.001

0 2 4 6 8 10 12 14 16 18 20

Leaf area density of cell, 1/m

Figure 3. Frequency of leaf area density alues.
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Ng interval intom subintervals by point®: 0 =Py <P; < ... <
Pean :Jpcell(r)uL (r)dr = Z Peen (rj)u; €3, (2 P,,<P,=P,., Let n{P)) be the number of foliated cells of

1= size g in which Pp.; £ Peg(r) < P;. We denote by;, the total
number of foliated cells of sizg i.e., the sum of alh(P;).
The total one-side leaf aredr)dr in a sufficiently small cell
is comparable ta” that is,u(r)dr = conste’. We can now
rewrite (2) as

whereV is the canopy space alyg(r) is the photosynthetic
response of unit leaf area within the cell,

m

1
Pee(r) = ZI Pear (T QL)Z_IT 9(Q)dQ, .
T
Pean = Z Pj—lng(Pj_l) conste? .
J:

Here g(©,) is the probability density of leaf normal
distribution over the upper hemispherg,2which is assumed

spherical distribution, i.eg(Q)=1. _Tz_;lking in_to account_the inequaliti®< Pnay j = 1, 2, ...,
Thus we define canopy photosynthesis at a given time 5445 POSsible to obtain
the sum of photosynthetic responses of individual cells. It m

seems clear that as cell sizés taken smaller and smaller, (2) Pggn < conste 2 PmaXZ ng (Pj-1) :consthaxsz N¢e (3)
should account for the photosynthetic response of individual =
leaves more and more accurately. This, however, is not true.

Figure 4 demonstrates daily variation in canopy photé’-\'hlch does not depend om o .
synthesis on a cloudy (September 16, 1992) and a clear sunn?d:Igure 5 demonstrates _the d|st_r|but|on of points (&)(1/ )
(September 27, 1992) day for two example canopies. T _fyg)) for the largest tree |n_ the simulated b_a;e plot; that is,
average difference between the daily canopy photosynthe'é'@ is the total number of f_ollated cells contalnl_ng needles of
from the two canopy approximations of the same base plot & trge of maximum dlamet(_ar. These points are well
about 14% on a cloudy day versus 9% on a sunny day. In t\)ﬂﬁﬁgroxmated by the linear function M) = 1.737 In(1£) +

cases the diurnal canopy photosynthesis decreased il t2l\l7.9)_vxgt2h7r§§[?7§7(:tég lq(&y Itlf?_llow;from this elz_gufatmn”
decreasing cell size. atN;, = . . Similar relationships are valid for a

Let us analyze the behavior of canopy photosynthesis tgges in our base plot, which can be expressed in the following

the cell sizee tends to zero. The photosynthetic respons@rm'
Peei(r) Qf unit leaf area may range between zero a}nd its. light- N¢.i=Ci e i=1,2 ..5. 4
saturation rate; that is, 8 Pgy(r) < Pnae We divide this o

100 T T T T T T T 180

cell size: 0.5— cell size: 0.5—
90 cell size: 0.25 — cell size: 0.25 —
160

140

[o2]
o

Canopy photosynthesis, in mg/sqm/h
Canopy photosynthesis, in mg/sqm/h
@
o

0 ! ! 1 I I I I

N
o

8 9 10 11 12 13 14 15 16 8 9 10 11 12 13 14 15 16
Time, hours Time, hours

Figure 4. Diurnal variation of canopy photosynthesis on a cloudy (left) and a sunny (right) day for two
canopy approximation by cells of the siz=9.5 m and=0.5 m.
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11

In(Nt.¢)
©

1 1.5 2 2.5 3
In(1/¢)

Figure 5. Dependence of Ih,) on In(1£). The points (In(1d), In(N;,)) are distributed along the linear
function with respect to In(&): 1.737 In(1€) + In(227.9).

Here N, is the number of foliated cells of sizecontaining Thus we obtain the following result: the more accurately

needles of thath representative of the tree clasg;is a canopy structure is reproduced, the more inaccurately canopy
constant that depends on the representative treeDasdhe photosynthesis is evaluated. We come to the same result when
fractal dimension of the foliage set defined &arhsley we evaluate the total PAR energy incident on leaves in the

1993] canopy. Two reasons may be given for such discrepancies. On
nN. the one hand, the number of foliage elements in an elementary

D; = lim —fal (5) Vvolume was assumed proportional to this volume. This allows

-0 Inl/e us to quantify the canopy structure in terms of leaf area

The fractal dimension quantifies the internal structure giensity distribution functionu(r) which underlies the use of

tree organization and may vary between trees and tree spe§EET'S law in radiation-photosynthesis calculations. On the
[Zeide and Pfeifer1991]. Because needles are approximatedfner hand, we used this method in a canopy in which the
as thin cylinders, which are close to a small straight line, thelationship between the elementary volume and the number

fractal dimension of our simulated trees is less then 2; that %I foliage element.s in. it_ was nonlinear (_equatioq (4)). If th,e
D, < 2. Substituting (4) in (3) and noting tt, is the sum of CaNoPy structure is similar to a fractal-like medium, Beer’s
' law cannot be applied to describe light interaction in forest

canopies. An essential revision of existing modeling

P <constP.. £2 2 C e <cons.. Ce2D techniques is_ needed to correctly simulate_ such processes in
can = max Z i = max ) forest canopies. We will attempt to do this next, when we
= consider radiation interaction in a medium described by the

HereC = max{Cy, C,, ... Cs}, D = max{Dy,D,,...Ds}. Since simplest fractal set, the Cantor set.
2-D > 0, it follows thatP.,, becomes arbitrarily small as
tends to zero! Note that no suggestions about radiation model TheCantor Set

and photosynthesis equation are required to derive the last . .
inequality. It means that such a degeneration holds true fo We consider the Cantor set that can be obtained by the

any radiation-photosynthesis model using fractal model é?lilowmg lterative prqcedure. A unit '”‘er"?" [0,1] 'S.dIV'ded.
into three equal subintervals, and the middle subinterval is
canopy structure.

removed. This transformation is then applied to each of the

Nt i, We can show that
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remaining two intervals (Figure 6). By repeating this trangach consisting dfl, . = 2" intervals of size = 1/3' (n =0, 1,
formation n times, we obtain theth approximation of the 2, 3 ,4). As the number of iterations tend to infinity, these
Cantor set. Figure 6 demonstrates four successive iteratianggrvals degenerate into points. A set of these points is said to

IEESESSSSSSSSsssssss——— =1 N, =1
I e = N =2
- . - - 113 N =2
EE mEE EE EE

] mnm m mm £

113, 0

I-a

192 1% 23 TR 10 X

Figure 6. The Cantor set (top) which is obtained by

be the Cantor set or Cantor’s points iterated from the interval
[0,1]. In section 5, the Cantor points will be interpreted as
foliage elements encountered along the photon path; in this
section we discuss some properties of the Cantor set necessary
for the discussion in section 5.

We begin with the derivation of a relative distribution
function of Cantor’s points. LeE(s) be the portion of these
points in the interval [Os). Clearly,F(0) = 0 and~(1)=1. Be-
cause the intervals [0,1/3) and [2/3,1) are transformed by the
same algorithm, each of them therefore contains an equal
number of Cantor’s points (Figure 6). In the interval [1/3,2/3),
there are no Cantor points. Therefore we assign the value 1/2
to the functionF(s) when 1/3< s < 2/3. The intervals [0,1/9),
[2/9,1/3), [2/3,7/9), and [8/9,1) are also subjected to the trans-
formation by this algorithm, and so each of them contains an
equal number of points from the Cantor set. Since the inter-
vals [1/9,2/9) and [7/9,8/9) have no Cantor points, the func-
tion F(s) is constant on these intervals, taking on the values
1/4 and 3/4, respectively. By repeating this proceduimes,
we obtain thenth approximation of the desired distribution
function. The eighth iteration &(x) is shown in Figure 7. As
the number of iterations tend to infinity, we can assign a value
to the functionF(s) at any point in the interval [0,1].

The relative distribution function of Cantor’'s points has

iteratively removing the middle one-third section of thetwo important properties. On the one hand, it is a continuous
“black” intervals. We describe a distribution of points of thefnction. On the other hand, it is a piece-wise constant func-

Cantor set in a relative unit taking the total Cantor set as

(bottom).

&on that can take new values only at Cantor’'s points. A
function satisfying these two properties is defined to be a

0.875

0.75 |

0.625

0.5

0.375

0.25

Portion, F(s), of Cantor's points in the interfal [0,s)

0.125

0 1 1

0 0.2 0.4

0.6 0.8 1

Length, s, of the interval [0,s)

Figure 7. Distribution function of Cantor’s points.
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singular function Kolmogoroy 1950]. dF(s) = X°49) (49)°, D=log2=0.63. (8)
We use the symbgf“(s) to denote the indicator function
of the Cantor set; that ig"(s) takes on the value 1, if there is
a point of the Cantor set at the pogi{0 < s< 1), and O
otherwise. We divide the interval ® s < 1 into M, equal
subintervalsg = [s.1,5), by pointss = (-1)¢, i = 1,2,..M,,
and approximate the indicator functigfi(s) by a piece-wise
constant functiony®(s); that is,x°(s) = X%, if s < s<s,

This equation shows that the relation between the length of an
elementary interval and the relative number of Cantor’s points
in this interval is nonlinear. Substituting (8) into (6), we can
expressF,(s) in terms of the indicator function for thath
approximation of the Cantor set

i
— D
i=1, 2, ...M,. Here)(cg,i is equal to 1, if there is a point of the Fei = ZXe:C,k (AS) . ©)
Cantor set in the intervak[;,s) and 0 otherwise. The length, =
4s (in relative units), of each interval & = &. The function It will be recalled that this equality, however, is valid only

Xe(s) converges to the indicator function, asends 10 zero. nqer g special choice &f i.e., whene = 1/3. Because the
Let M,c be the numbe_zr of intervals contalnlng_ points of th@,nction F.(9) converges td=(s), no matter howe tends to
Cantor set. Note that # = 1/3, thenM,c = 2" (Figure 6). It ¢, (9) is approximately satisfied fether than 1/3 This
follows from (5) that the fractal dimensi@nof the Cantor set ¢, mula therefore provides a means of approaching the
isD =In 2/In 3= 0.63. o relative distribution of Cantor's points, using theth

Let us consider theth approximation of the Cantor sety,, 6yimation of the Cantor set and its indicator function as
which can be explicitly described by the functl,??}(s)._ We input variables. Indeed, it follows from (9) that the portion of
approximate the distribution function of Cantor’s points by g&antor's points in the interval K),is the sum of power of the

piece-wise constant functidfi(s): F«(s) = F; if S1SS<S, I=  lengths of intervals containing the Cantor points. The value of
1,2, ..M, whereF; is a portion of Cantor's points in the ,er coincides with the fractal dimension of the Cantor set.
interval [0,s); that is, Equation (9) allows us to introduce a generalized length to

i i measure Cantor's points. Lét be a length of the interval
Fei =F(s)= Z (F(sx) —F(s¢-1)) = Z dF(sy). (6) [0,1] expressed in a metric system (e.g., in meters). A length
=1 =1 of each subintervalg];,s) is AsL in this system. It follows

It may be shown that this function converge&(s) ase tends from (9) that

to zero. The functiorF,(s) can only be evaluated when the F(sL)=F(L" (10)
values ofF(s) are specified aM, + 1 discrete values of its that is, the portior(s) (dimensionless) of Cantor’s points in

argument. This information, however, may often be unkno e interval [05) of the lengthsL has a generalized length

in practical situation; for instance, as.when one deals with 9LC (e.g., in M). Thus the Cantor set iterated from the in-
fractal set like the one used to simulate the tree sta

d ibed lier. Th . h . ¢ wheth hval [0,1] of length. = 1 m can be assigned the generalized
escribed earlier. The question then arises of whether or T@ﬁgth of 1 R, whereD = log 2 =~0.63 is the fractal

Fhe distributicon function of Cantor's points can be approach@gl,o\ion of the Cantor set. We call this set a unit Cantor set.
in terms ofy E(S)', Therefore if a Cantor set is iterated from an interval of length
Let us examine the convergence proc@es) -~ F(S) H, its total generalized length 4. The generalized length of

Whenetake§ onvalues I’ =1, 2, .., . In this case we haveitS portionF(s) in the interval [0s H], 0< s<1, of lengthsH is
(compare Figure 6) F(s) H® (e.g., in ). From this viewpoint, (9) has a simple
interpretation. Indeed, theh approximation of our Cantor set

F(sc) = F(Sc-1) (e.g., shown in Figure 6) consists of Cantor subsets iterated
01 . _ _ from subintervalsq.,,s), each of them of lengthis. Equation
o if therearepointsof theCantorsetin[s,1,S¢).  (9) shows that the generalized length of the whole Cantor set
=0 is the sum of the generalized lengths of these Cantor subsets.
%), otherwise, The result formulated in terms of (9) can now be utilized
to specify a distribution function of fractal-like sets, other
= i ng_ (7) than the Cantor set, for example, of the fractal sets shown in
2" Figure 1. This relationship is a special case of the Lebesgue

theory of integration known as Lebesgue integral with respect
Taking into account the following relationship between thgy the Hausdorf measurddrnsley 1993]. The following
fractal dimensionD = In 2/In 3 = In 2 and the length resylt of this theory can be used to derive the relative leaf
As=¢ =1/3'(in relative units) of the intervak[.s), distribution function for our fractal tree model.
Consider a functioy(p) (in n) of the positive variable

0952
(AS)D _H1 -1 defined as
n on !

we can rewrite (7) as
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Ne density distribution functior(r,D) of the fractal-like set at
ls(p):ZXs,iEpv p>0  (nnf), (11) as
1=

_ i Fe(&.D) _ . Fe(g.D)_ 1
whereN, andy,; are as in section 2.3. LEp) be the limit of (r.D) _l'ino u(dr) l'[no £P B 1(D)
I(p) as the cell size& tends to zero. This function can only
take on three values: infinity if 0 g < D, a nonzero finite that is, a portion of a fractal-like set, per elementary volume,
value if p = D, and zero ifp > D [Barnsley 1993]. A point about the space point is proportional to the indicator
p=D at which the jump to infinity occurs is defined to be théunction of this set.
Hausdorf dimension. In many practically important cases (and This approach allows us to formulate the concept of gen-
our fractal tree models are among them), the fractal dimensi@f@lized leaf area density distribution function as follows:
(5) coincides with the Hausdorf dimensidBansley 1993]. Consider an elementary voluneeaboutr in the tree crown.
Therefore knowing the fractal dimension of our trees, we c&piven the total one-side leaf arg4in nv) of the tree crown,
approach its relative foliage area distribution function as  the leaf area density distribution functiefr,D) can be de-
termined as the ratio of the one-side leaf @a(r,D) u(dr)
F.(V,D) = 1 ng(r)gD (dimensionless), (12) in the elementary volume aboutio the generalized volume

x(r) (in m);

l¢(D) u(dr) of this elementary volume; that is,
whereV is a domain in the tree crown, and the summation is _ _ S . dy.
performed over all cells iW. u(r,B)=Se(r,D)= |(D)X(r) (in nf/m®); (14)

This result allows us to generalize the concept of length,
Surface’ and volume. |ndeed, the Va]ﬁecan be interpreted that iS, this function is prOpOftional to the indicator function
as a Specific volume (area, or |ength) of the fine cell and tﬁ)é the tree crown. Note that the leaf area denSity distribution
value ofl(p) at the poinip = D at which the jump to infinity function depends on the fractal dimensinof tree crown
occurs as the genera"zed volume (area’ or |ength) of a %tICh is determined by within-crown leaf organization and
consisting of these cells. For example, the unit Cantor set HAgy vary between tree&dide and Pfeiferl991].
the generalized "length" df0.63) = 1 M® It follows from Thus the Hausdorf integration technique gives us a
(4) and from Figure 5 that the value I¢1.737) = 227.9 (in Possibility to express canopy structure both quantitatively and
m1'737) can now be assigned to the crown volume of our |ar@.ualitatiV6|y. Note that we have outlined this approach
est fractal tree. It can be shown that the fractal dimension &fthout precise mathematical argumentation. It refers, for
the tree crown space simulated by a homogeneous geometrg@mple, to (12); in the general case the fractal dimension of a
figure (e.g., a cylinder, or a cone) is 3. In this case, the croffi@ctal set bounded by the domaihmay differ from one
volume in true sense and the generalized voli@)e(in n¥)  derived from (11) and hend&V,D) may not be a meaningful
are the same. The Hausdorf integration technique thereforefction. The problem of specifying a strict mathematical de-
no way conflicts with the one we usually use. On the oth&€ription of the whole approach and of incorporating it into a
hand, the scope of integration is extended since there egatticular research theme is the topic of another investigation.
functions integrable in the Hausdorf sense (e.g., the indicator
functions of the Cantor set and of our fractal trees) for whidh. Radiative Transfer and Photosynthesis
the classical definition of integral, as demonstrated in ti@ Turbid and Fractal Media
previous section, fails.

It is customary to write (12) and its limit (agends zero)
in the following generalized form:

1
l¢(D)

We consider the following model of fractal canopy
organization; The canopy space is a parallelepiped of hidight
(in meters) and basal arem(in square meters). The canopy
consists of horizontal planes with optically black, flat linear
elements, horizontally oriented and uniformly distributed. The
leaf area density of planes (the total one-side leaf area in the
1 plane per unit plane area) is assumed constant. Further, there
F(v.D) :WJX(F)H(C"), (13) are no leaves in between these planes. Two different patterns
of vertical distribution of the planes will be analyzed here.

Fe(V,D) = ZXE(rm(dr),

. - Let the canopy be illuminated from above by a beam
wherep(dr) is the Hausdorf measure (or a specific volume) Oferpendicular to the horizontal plahe= 0 (Figure 8). We

an elementary volume (fine cell, or area, or length) about tRE me no mutual shading between leaves when viewed alon
point r. For the examples mentioned above, this measure?’gl SL;) emo tE uAaVsra rgdieti ene ttei e; N el nethe t?orr?
expressed ag(dr) = (d9%% = €% for the Cantor sefu(dr) = e beam path. Average radiation attenuation along the bea

(dxdyd3- " = 7 for the tree crown space of the IargesPath can be described by the following differential equation:

fractal tree class, angd(dr) = dxdydz= & for tree crowns dl = -I(h) dgh), 10) =1q , (15)
simulated by geometrical figures. ét=g in (13), and as the
size € of the cellg aboutr tends to zero, we obtain a relative
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the total number of fine celld, and the size of an individual
cell are related by the following equation:

z=() n
= I g2g=Ho (18)
- N£
1 where Ho is the volume (in cubic meters) of our canopy
space. This equation has a simple interpretation: the volume
of an individual cell is the ratio of the volume of our canopy
= to the total number of cells constituting the canopy space.
__-': ] 5.1. Turbid medium.
z=1 Cells with foliage are uniformly distributed within the
v £ canopy space and therefore the indicator function takes on the
a b value 1 at any space point within the canopy space. Taking
into account (18), we can rewrite (11) as
. . - p-HO p_ p-3
Figure 8. Horizontally homogeneous fractal model of canopy le(p)=N; ¢ _5_38 =Hoe™ ™.

organization. The canopy space consists of horizontal planes

with plane leaves, horizontally oriented, and uniformly, . . ; ; ;
distributed. The vertical distribution of these foliated planelst S clear.fthatg(p) Itall<es_a f'r_lllLe Valllje’ thgt |s-r|]a (in cubic
coincides with distribution of Cantor's points along the 0zMeters), if and only ip = 3. The volume, in the true sense,
axis. Three successive iterations of our fractal model dherefore coincides with the volume of leaves. lL&l; be the

canopy organization. leaf area index (the total one-side leaf area in the canopy
space per unit ground area). It follows from (14) that the leaf

. . . . area density distribution function is
wherel(h) is the intensity of the light beam at the depth
S(h) is the cumulative leaf area indexraftotal one-side leaf |, 5 _LAlg0 _LAlgg _LAlg
area abové per unit ground area, dimensionless), & 1(3) Ho H
the intensity of incident radiation. Its solution is

(in m).

Thus the cumulative leaf area ind&(h) for the turbid

1(h) =loexp(-h)). (16)  medium has the following form:
Assuming an invariant photosynthetic respoRgg of a h
foliage surface element as well as taking into account (15) and Sg(h) =LAlg i LAlg F(s1). (19)
(16), the rate of canopy photosynthed?s,can be formally
expressed aOker-Blom et al.1991] HereF(s,1) =sis the relative foliage distribution function for

the turbid mediums = h/H is the lengthof the interval [0)

in relative units. Note that the fractal dimension of the whole
interval [OH], compare (5) and (18), is 1. To emphasize this,
we include this value in the argument list of the distribution
(17)  function.

where T(h) is the canopy transmittancel(h) = I(h)/l, = 52 Cantor Medium
exp[-S(h)]. _ _

Thus the canopy transmittance and photosynthesis can be The total number of horizontal layers of lengticontain-
evaluated when the cumulative leaf area index is specifidfld the foliated planes coincides with numbié,c, of inter-
We derive this variable for two different vertical distributionsvals of the same lengtls, along the vertical axis containing
of the above mentioned horizontal planes. In the first case, th@ntor's points (Figure 6). Consider the situation when the
foliated planes are assumed to be uniformly distributed aloftze€ of a cell can take on the valueg3’, n=1, 2, ..., only.
the vertical within a layer [6{]. We term this canopy In this case, we have (Figure B).c = 2' = (3)° = (H/¢)°,
organization a turbid medium. In the second case, the verti¥dtereD = log; 2 is the fractal dimension of the Cantor set.
distribution of the foliated planes in [}, coincides with the Because leaves are uniformly distributed over the horizontal
distribution of Cantor's points iterated from the intervaH[p, Planes, each foliated layer contaioi” cells. Thus the total
(Figure 8). We call this canopy a Cantor medium. number of foliated cellsN;; can be expressed a¢;; =

Our analysis will be performed in terms of the generalizéd@’€)(H/g)® = aH¢®?_ It follows from this relationship that
volume discussed previously. In order to derive this variablgl1) can be rewritten as
we introduce a fine spatial mesh as in section 2.2. Note that

1 Iy 1
P = [Peat 1 (DOSO) = [Re (1= [Pl T
0 1TH) TH)

l.(p)=N, eP=aHP P 2P (innf).

6142



KNYAZIKHIN ET AL .. RADIATION AND PHOTOSYNTHESIS IN FRACTALS

This function can take a finite value, i.@t® (in n?**P), if 1 T
and only ifp = 2 +D. Therefore the generalized volume of P(D) = Heaf(IOT)?. (22)
leaves in our canopy space is expCLAID)

1(2+D) =oH’  (in m™). Thus if the turbid medium is replaced by the Cantor medium,

Because the functioh(2+D) converges td(2+D), no matter Canopy transmittance and photosynthesis will change from

how ¢ tends to zero, this result does not depend on a specifi:1) andP(1) to T(h,log,3) andP(logs2).

choice for the size of the cell. It follows from (21) that the relationship between leaf area
Let LAl be the leaf area index of the Cantor medium. jpdex and transmittance of a canopy can be expressed in the

follows from (14) that the generalized leaf area densilﬁ?rm of Beer’s law, irrespective of the internal organization of

distribution function (in n?) has the following form: the canopy; that is,
o LAl o LAl LA T(H.D) = exp(LAl), (3)
u(r,2+D) = < x(r)=——2=x(h) =—=x(h) . .
1(2+D) oH H whereLAIl = LAl for the turbid medium antAl = LAl for

the Cantor medium. Therefore in the case of horizontally ho-
Because leaves are uniformly distributed over horizontghogeneous media, it follows that canopy transmittance can be
planes, the indicator function of the Cantor medium does n&tedicted by Beer's law irrespective of the Canopy Organiza_
depend on the horizontal coordinates. Its vertical dependengsh. This, however, leads to erroneous estimation of leaf area
coincides with the indicator function of the Cantor set iteratggldex when the Beer’s law is inverted. Indeed, one can meas-
from the interval [GH]. Taking into account (8) and (10), oneyre canopy transmittance without making any assumption
can derive the cumulative leaf area indfh) of the Cantor ahout canopy organization. The leaf area index thus derived
medium from (23) does not depend on such assumptions too. In using
this technique therefore, the important thing is to recognize
LAl the canopy organization to which the derivedl refers. Let
HD dF(h) us suppose that the leaf area index derived corresponds to the
Cantor medium. In this case, ith approximation contains'2
LAl foliated layers of the heiglat= H/3" each (compared to turbid
o F(h) =LAlc F(s,D) (20)  medium which contains"Joliated layers of the height =
H H/3" each). Let us remove all nonfoliated layers and change
reach foliated layer by powering its heightDy= log; 2. As a
yesult of this transformation, the new medium hagofBated
layers of the height = H®/2" each. These layers are now uni-
ormly distributed along the vertical within the layerH6].

h h
Se() = [ x(u(an = |
0 0

where u(dh) is the Hausdorf measure of an elementa
interval [h,h+dh); that is,u(dh) = (dh)® (in mP); F(s,D) is the
relative distribution function of the unit Cantor set introduce

in section 4 (we include the fractal dimensi@n in its Thus the Cantor medium of depithand leaf area indeiAl.

argument list here), angl= h/H is the lengthof the interval . .
[0.h) in relative units. It follows from (20) and (10) that thec0"TESPONdS to the turbid medium of depth and the same
function S«(h) coincides with the distribution function of leaf area index Al.. Therefore if we want to treat this Cantor

Cantor’s points iterated from the interval [0,1] of the Iengtmeollum of deptiH as a turbid m‘f,S'“m. of the same depth,
1D . . D . then we should assign the valugl™™ to its leaf area index.
LAI: " expressed in relative unit\lc~ h/H. Therefore if the . -
. . S Npte that the same result was derived by analyzing (19) and
leaf area index of the turbid medium is taken as the length &0) Such a correction of measuisl is required before its
the interval [0,1] in relative unite=LAlg h/H, then the leaf ’ q

area index for the Cantor medium can be expressed as ll;s\'; as input for any canopy radiation model based on Beer's

LAlc = (LAIg)" Neglecting internal canopy organization also leads to

where D is the fractal dimension of the Cantor set. Thigrrors in estimated canopy photosynthesis. The Cantor canopy

: : : D
equation has a simple interpretation: removing the foliatdd equivalent to the turbid medium bAlc™. Thus the Cantor

planes from the turbid medium by means of the iteratiy@edium which contains Iea_lves 9f ard Al takes UE,DaS
procedure shown in Figure 8 involves the alteration in the Ieg}u_Ch CQ as the turbid medium with leaves of areBAlc™.
area index from the value &fAlg (for the turbid medium) to This follows from (22) also.
(LAIR)® (for the Cantor medium).

The canopy transmittancih,D) of the media takes the 6. Summary

form The architecture of a vegetation canopy is the most

T(h,D) = exp(-Sh)) = exp(LAIg® F(s,D)), (21) important factor determining the canopy radiation regime. All
. . o . canopy radiation models therefore require the probability dis-
whereF(s,D) is the relative plane distribution function for thetribution function of leaf area in order to specify statistical

layer [OH]. Inserting this in (17), we obtain an expression fo1lreatures of canopy architecture. In probability theory
canopy photosynthesis
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[Kolmogoroy 1950], any distribution functioff can be rep- Carlson, B. G., Transport theory: Discrete ordinates quadrature over
resented as a sum of three componénts:.aC+J+)Swhere Hl]?\,lu%;’gher’e LANL Rep. LA-4554Los Alamos Nat. Lab.,

a, B, andytake on the values 0 or 1 depending on whether @hen, S. G., B.Y. Shao, I. Impens, and R. Ceulemans, Effect of plant
not the corresponding component is represented. The firstcanopy structure on light interception and photosynthekis,

. . . e Quant. Spectrosc. Radiat. Transfgg, 115-123, 1994.
summand C is the continuous probability distribution 4o Reffye, FF),” P. Dinouard, and D. Barthélémy, Modélisation et

function. The uniform, Gaussian, gamma, etc., distributions simulation de l'architecture de I'orme du japon Zelkova Serrata
are examples of this component. The second sumdanithe (Thunb.) Makino (Ulmaceae): La notion d'axe de référence, in

jump function. This is a piece-wise constant function which gg#g{'?ggﬁfmpe"ensw pp. 251-266, CIRAD Montpellier,

describes random discrete variables taking on finite @&hlinger, J.R., and C.B. Field (Eds.Scaling physiological

countably infinite number of values. The third summahis processes: Leaf to globAcademic, San Diego, Califl993.
the singular function. It is a continuous, nonconstant functiocr;\rUDer’ F., J. Heimann, and A. Thorwest, Jahresbericht zum BMFT-
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whose derivative is zero almost everywhere. ForschungszentWaldokosyst Ser. B, vol. 31, pp. 259-279,

Previous canopy radiation models used the first and 1992. _
d ts to describe the structure of ve etatll%n azikhin, Y., G. Miessen, O. Par)fyoroy, and G. C_Era\_/enhorst,
second componen 9 mall-scale study of three-dimensional distribution of

canopies which allows us to mathematically express radiationphotosynthetically active radiation in a foresgric. For.

attenuation by Beer's law. This predetermines the scale ag%%‘gegrrg\llv iR pl[/(leslsr’oli?j;'t'ons of the Theory of Probabiliy
L ; o . , A. M., Fou i ili
which it provides an adequate prediction. This is the land=",, “chelsea, New York, 1950 Y

scape scale, which can account for spatial distribution @fanigk, J., Ein Model fir den Strahlungstransport in

trees, tree shape, the mean vertical or/and horizontal distribu-Fichtenbestanderi27 pp., Cuvillier, Géttigen, Germanyl996.
i f foliage within crowns. clumpina. and mean leaf SiZé(ramlgk, J., and G. Gravenhorst, Ein dreidimensionales Modell fiir
lons o g ’ ping, ' FichtenkronenAllg. Forst Jagdztg., 168), 146-149, 1993.

but which ignores small-scale structural features of canopyanigk, J., F. Gruber, J. Heimann, and A. Thorwest, Ein Model fiir
organization. In the present paper, we considered examples offie Kronenraumstruktur und die raumliche Verteilung der

fractal-like canopy organizations, in which the spatial distri- ng?ll%t_)ﬂf)laigg_'&f'gg&"qcmenbestamg' Forst Jagdztg.,

bution of phytoelements is described by singular probability, X., and A. H. Strahler, Geometrical-optical bidirectional
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